Bottleneck in the Development of Quantum Computers

QUC conference

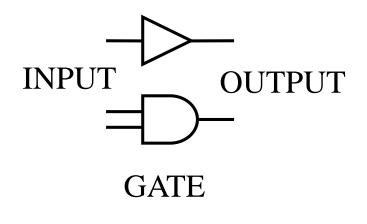
Soonchil Lee KAIST

Outline

- 1. What is Quantum Computing?
- 2. How are Quantum Algorithms implemented?
- 3. NMR QC
- 4. Ex) Deutsch algorithm
- 5. Bottleneck of QC

1. What is Quantum computing?

Classical computing



Quantum computing

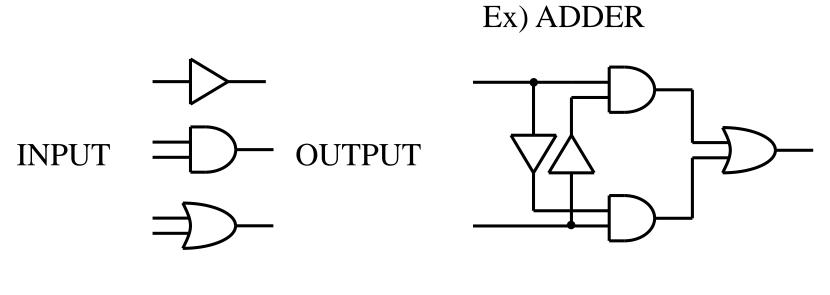
$$i\hbar\frac{\partial\psi}{\partial t} = H\psi$$

$$\psi = e^{-iHt/\hbar} \psi_0$$

OUTPUT **U** INPUT

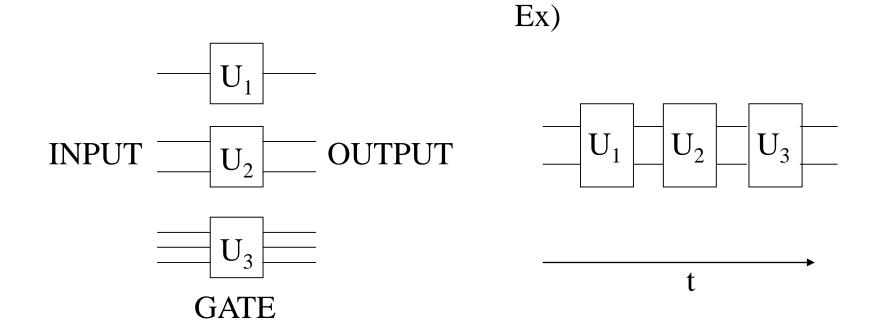
	Classical	Quantum	
	computing	computing	
Bit	0V & 5V	Quantum eigenstates	
	states	- <u>suposition</u>	
state		Ex)spin up & down	
		Photon polarization	
operation	semiconductor	Unitary operation	
operation	Gates		
Algorithm	Spatial array of physical gates	Serial excution of unitary operations	
Excution			

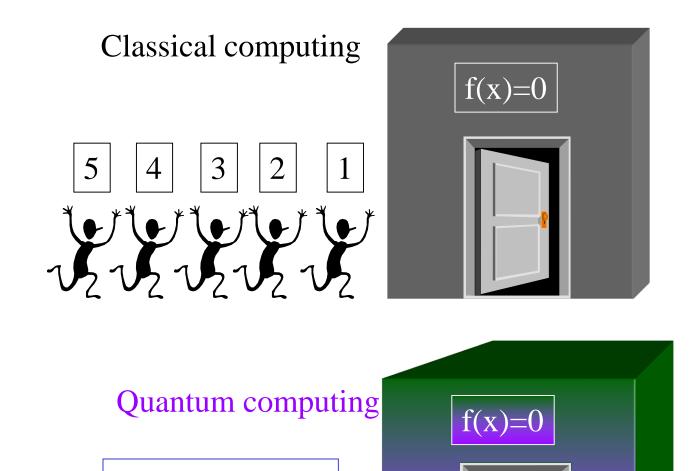
Classical computing

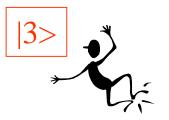


GATE

Quantum computing







2. How are Quantum Algorithms implemented?

- Classical computation
 - : Algorithm-program-machine code -physical gates

- Quantum computation
 - : Algorithm-unitary operation-gate operationphysical operations

qubit - two states with good quantum

•charge : quantum dot

- •spin : quantum dot, molecular magnet, ion trap, NMR, Si-based QC
- •photon : optical QC, cavity QED
- •cooper pair : superconductor
- •fluxoid : superconductor

Spin qubit quantum computer

• Hamiltonian – Zeeman & interaction terms.

$$H = \sum_{i} \hbar \omega_{i} I_{i\alpha} + \sum_{i,j} J_{ij} I_{iz} I_{jz}$$

Execution of quantum algorithm

(1) Programming - unitary operator U + measurements

(2) Assemble - Decomposition of U : $U=U_1U_2U_3...$

where U_i is a gate operation.

(3) Compile - Realization of gates by physical operations

Execution of quantum algorithm

(1) Programming - unitary operators + measurements

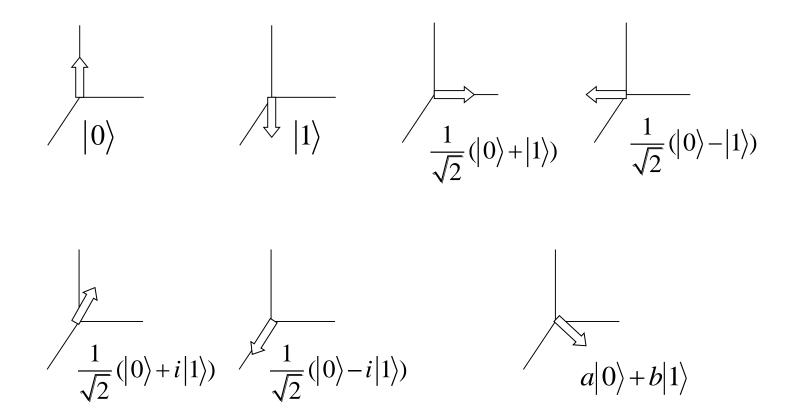
(2) Assemble - Decomposition of U : $U=U_1U_2U_3...$

where U_i is a basic (gate) operation.

"Any unitary operator can be expressed as a combination of single qubit operators and controlled-NOT operators."

(3) Compile - Realization of gates by physical operations

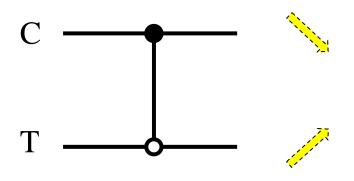
Single qubit operations of spin qubits (Bloch Sphere representation)



Infinitely many operations

Controlled-NOT

input		output	
С	Т	С	Τ
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0



 $U(|0\rangle + |1\rangle)|0\rangle$: disentangled state = $|0\rangle|0\rangle + |1\rangle|1\rangle$: entangled state

Execution of quantum algorithm

(1) Programming - unitary operators + measurements

(2) Assemble - Decomposition of U : $U=U_1U_2U_3...$

where U_i is a gate operation.

(3) Compile - Realization of gates by evolution operations

 $\exp(-iH_it/\hbar)$

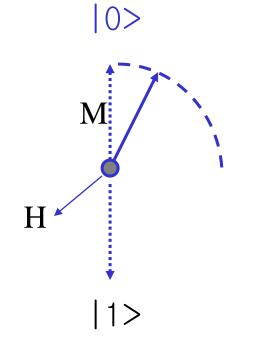
where H_i is a part of a Hamiltonian.

Selective single qubit operation

ÎÎ

Single qubit operation is performed by pulsed magnetic field

Single qubit operation in spin quantum computer

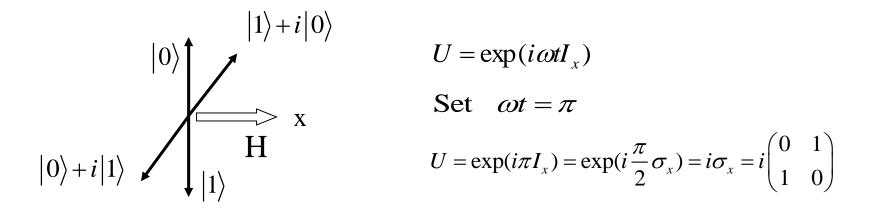


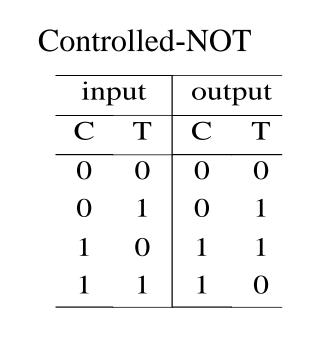
$$\frac{d\vec{L}}{dt} = \vec{\tau}$$
$$= \vec{M} \times \vec{H}_0$$
$$= \gamma \vec{L} \times \vec{H}_0$$

$$\boldsymbol{\varpi} = \boldsymbol{\gamma} \boldsymbol{H}_0$$

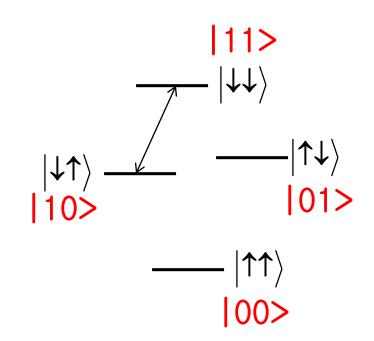
Ex) NOT operation

$$|\psi\rangle = \underbrace{e^{-iHt/\hbar}}_{U} |\psi_0\rangle \qquad \text{Assign} \quad |\uparrow\rangle \equiv |0\rangle \equiv \begin{pmatrix}1\\0\\\end{pmatrix} \\ |\downarrow\rangle \equiv |1\rangle \equiv \begin{pmatrix}0\\1\\\end{pmatrix} \\ \text{We need} \quad U = \begin{pmatrix}0 & 1\\1 & 0\end{pmatrix}$$





 $U(|0\rangle + |1\rangle)|0\rangle$: disentangled state = $|0\rangle|0\rangle + |1\rangle|1\rangle$: entangled state



C-NOT is performed by Selective excitation

* Controlled-NOT operation

$$U_{C-NOT} =$$

$$R_{1z}(\frac{\pi}{2})R_{2x}(\frac{\pi}{2})R_{2y}(\frac{\pi}{2})U_{12}(-\frac{\pi}{2})R_{2y}(-\frac{\pi}{2})$$
where $R_{i\alpha}(\theta) = \exp(-i\theta I_{i\alpha})$
and $U_{ij}(\theta) = \exp(-i(J_{ij}I_{iz}I_{jz})t/\hbar)$

$$= \exp(-i(J_{ij}t/\hbar)I_{iz}I_{jz})$$

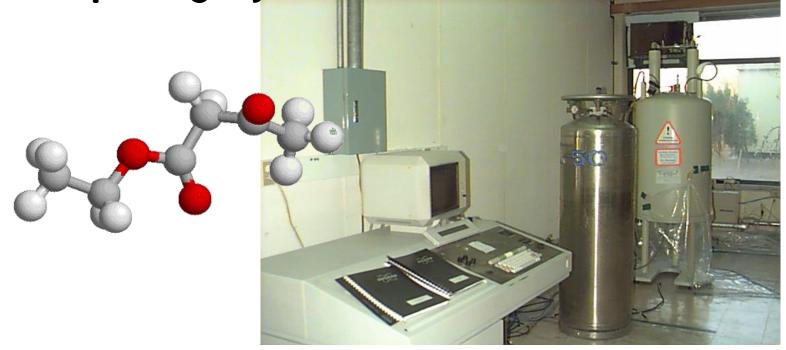
$$= \exp(-i\theta I_{iz}I_{jz})$$
if $H = \sum_{i}\sum_{i,j}J_{ij}I_{iz}I_{jz}$
(J-coupling)

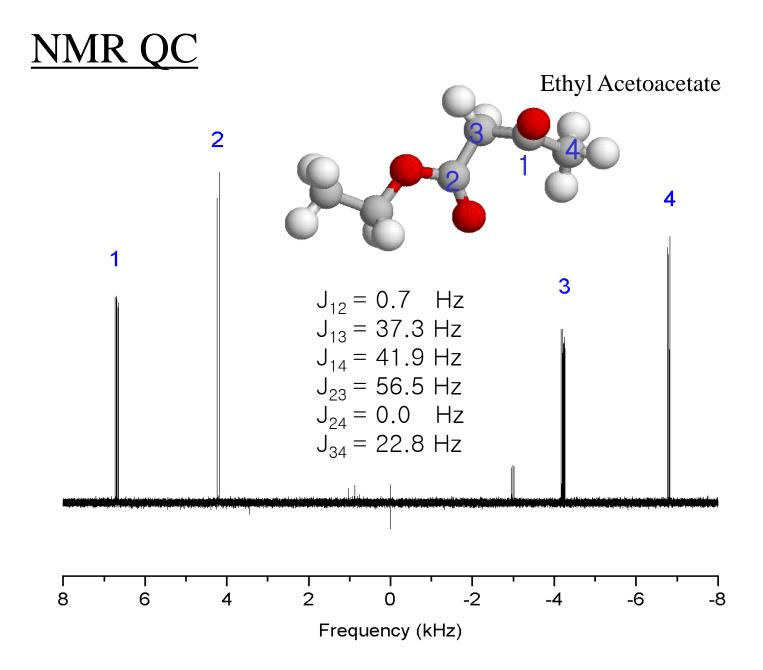
Interaction is necessary for C-NOT operation. C-NOT is performed by just waiting.

3. NMR QC

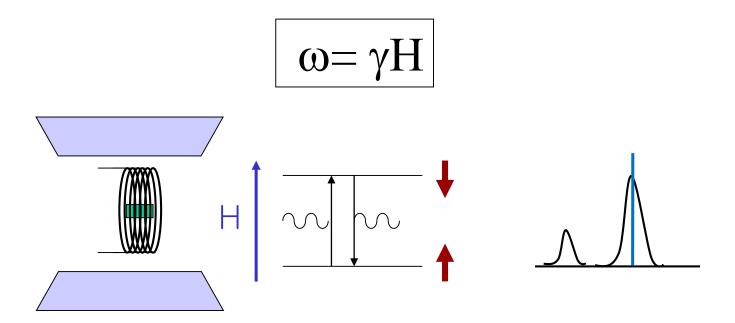
17 years ago...

 1st demonstration of quantum computing by NMR in 1997

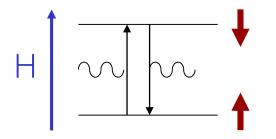




Magnetic Resonance

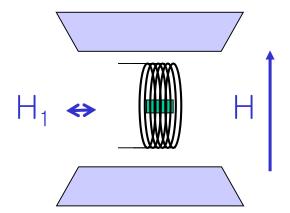


Resonance of magnetic field and electromagnetic wave. $(\gamma : gyromagnetic ratio)$

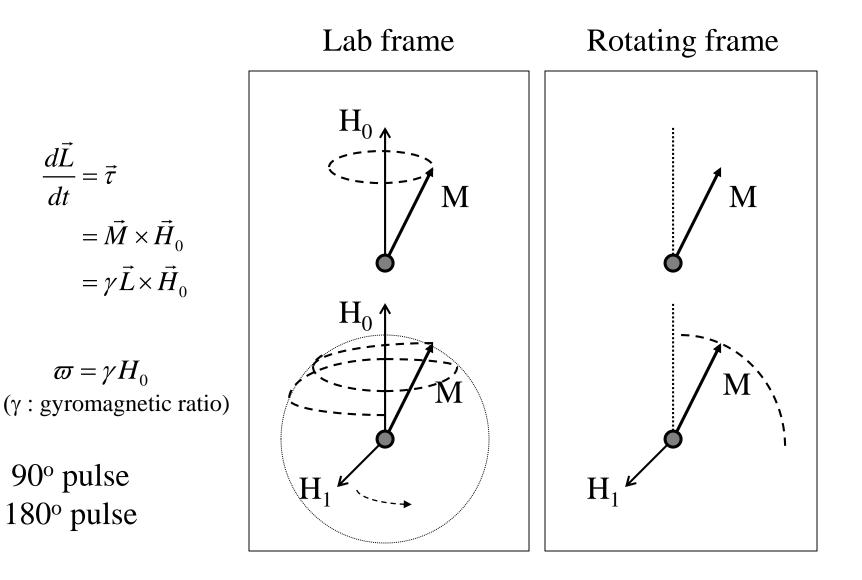


If transition probability is 1, $|\uparrow\rangle \leftrightarrow |\downarrow\rangle$ What if, $\frac{1}{2}$? $|\uparrow\rangle + |\downarrow\rangle$? or $|\uparrow\rangle - |\downarrow\rangle$?

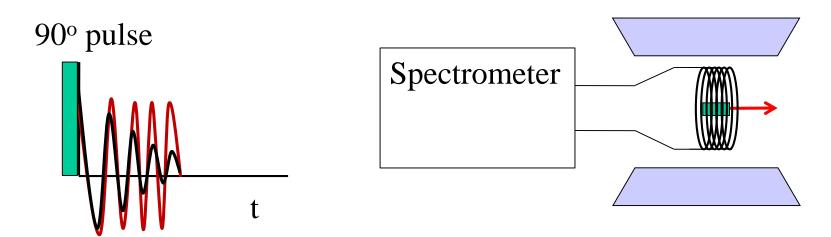
In resonance experiment, two magnetic fields are used; one strong static field (H_0) , and the other weak rf field (H_1)



Pulse NMR



pulse NMR



Spectrometer applies rf pulse and measure free induction decay

Absorption

f

Absorption spectrum is the Fourier Transform of the Induction signal.

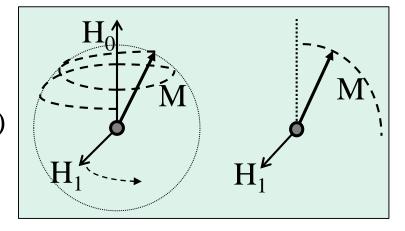
* Single qubit operation in Quantum Computation

Hamiltonian

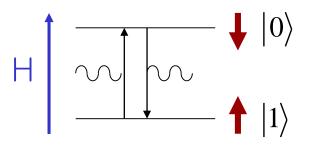
$$H = \mu_{\alpha}H_0 = \gamma L_{\alpha}H_0 = \hbar \omega I_{\alpha}$$

Evolution

$$R_{\alpha}(\theta) = \exp(-iHt/\hbar)$$
$$= \exp(-i\omega t I_{\alpha}) = \exp(-i\theta I_{\alpha})$$
Rotation operator



Single qubit operation in NMR is performed by an rf pulse.



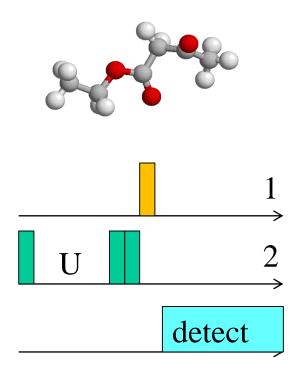
* Controlled-NOT operation

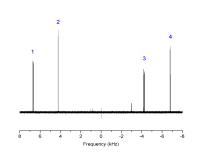
$$U_{C-NOT} =$$

$$R_{1z}(\frac{\pi}{2})R_{2x}(\frac{\pi}{2})R_{2y}(\frac{\pi}{2})U_{12}(-\frac{\pi}{2})R_{2y}(-\frac{\pi}{2})$$
where $R_{i\alpha}(\theta) = \exp(-i\theta I_{i\alpha})$
and $U_{ij}(\theta) = \exp(-i(J_{ij}I_{iz}I_{jz})t/\hbar)$

$$= \exp(-i(J_{ij}t/\hbar)I_{iz}I_{jz})$$

$$= \exp(-i\theta I_{iz}I_{jz})$$
if $H = \sum_{i}\sum_{i,j}J_{ij}I_{iz}I_{jz}$
(J-coupling)





Interaction is necessary for C-NOT operation

4. Example : Deutsch Algorithm

Refined **Deutsch**'s Algorithm

IN	(DUT			
	f_{oo}	f_{01}	f_{10}	f_{11}	
0	0	0	1	1	
1	Ο	1	0	1	

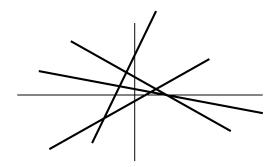
 f_{00}, f_{11} :constant fn f_{01}, f_{10} : balanced fn

•Problem: Is a given function f balanced or constant?

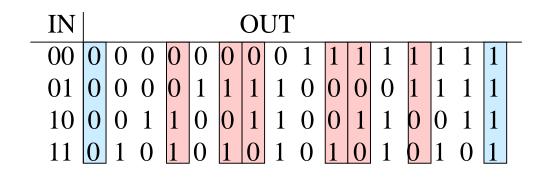
•To answer, classical computing requires 2 operations, f(0) & f(1).

cf)
$$x-1$$

-0.5x+1
 $3x+4$
-x+2



For 2 qubits, 3 operations are required classically



For n qubits, there are 2^n input states & $2^{n-1}+1$ operations are required classically.

•Number state in QC : $|0\rangle$, $|1\rangle$

ex) 0 + 1 = 1, but $|0\rangle + |1\rangle \neq |1\rangle$

QC requires only 1 operation (irrespective of n) iff
(i) initial state is |0>+|1>
(ii) (unitary) operation U : |x⟩ → (-1)^{f(x)} |x⟩

then,
$$|0\rangle + |1\rangle \xrightarrow{U_{00}} (-1)^{f_{00}(0)} |0\rangle + (-1)^{f_{00}(1)} |1\rangle$$

= $(-1)^{0} |0\rangle + (-1)^{0} |1\rangle$
= $|0\rangle + |1\rangle$

$$\begin{aligned} |0\rangle + |1\rangle &\longrightarrow (-1)^{f_{00}(0)} |0\rangle + (-1)^{f_{00}(1)} |1\rangle = |0\rangle + |1\rangle \\ |0\rangle + |1\rangle &\longrightarrow (-1)^{f_{01}(0)} |0\rangle + (-1)^{f_{01}(1)} |1\rangle = |0\rangle - |1\rangle \\ |0\rangle + |1\rangle &\longrightarrow (-1)^{f_{10}(0)} |0\rangle + (-1)^{f_{10}(1)} |1\rangle = -|0\rangle + |1\rangle \\ |0\rangle + |1\rangle &\longrightarrow (-1)^{f_{11}(0)} |0\rangle + (-1)^{f_{11}(1)} |1\rangle = -|0\rangle - |1\rangle \end{aligned}$$

Balanced functions change relative phase. Parallel processing thanks to superposition principle!

Implementation of 1 qubit Deutsch's algorithm

(1) Preparation – make $|0\rangle$ (or $|1\rangle$) state.

(2) Superposition
- pseudo-Hadamard operation
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

 $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

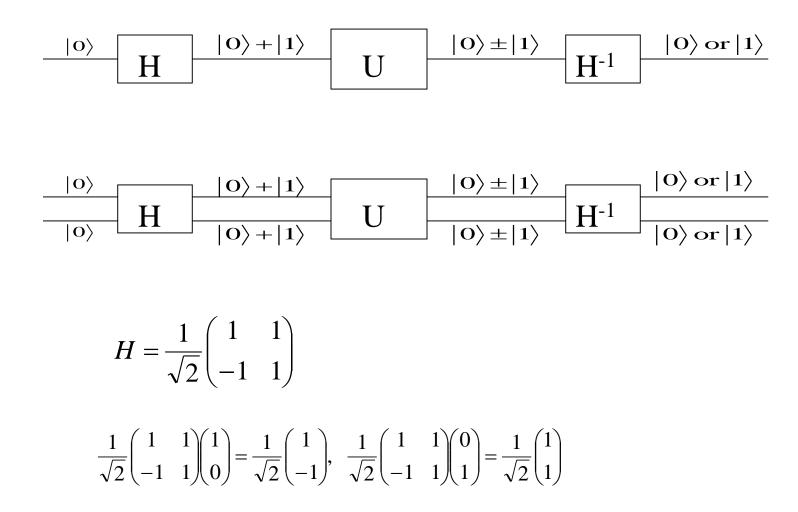
(3) (Unitary) Operations

$$U_{00} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, U_{01} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, U_{10} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, U_{11} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

(4) Inverse pseudo-Hadamard $H^{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

(5) Reading

Quantum network



Operation

$$U_{00} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} : \text{Do nothing}$$

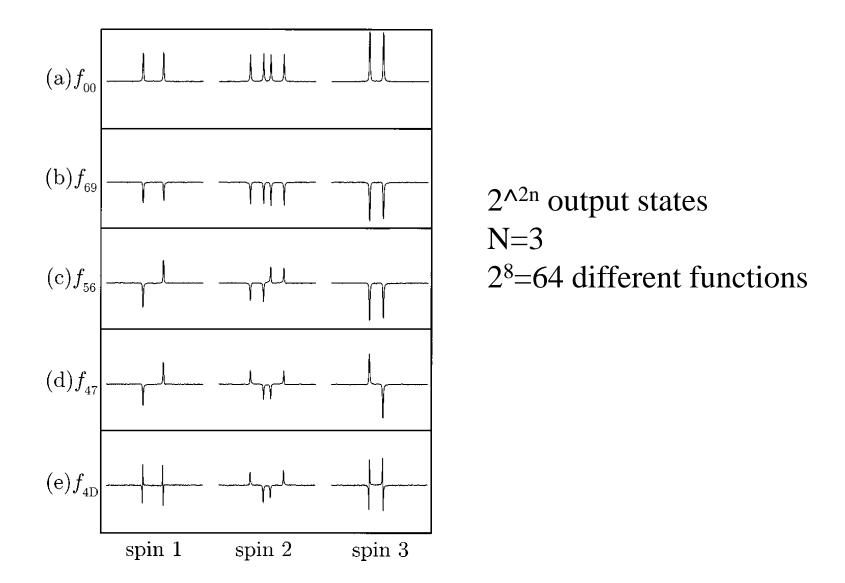
$$U_{11} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -U_{00}$$

$$U_{01} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\equiv R_x (180^\circ) R_y (180^\circ) = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} = -i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$U_{10} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = -U_{01}$$

Implementation of the refined Deutsch-Jozsa algorithm on a three-bit NMR quantum computer



5. Bottleneck of QC

Quantum systems suggested as QC

Atomic and Molecular

Ion trap Cavity QED NMR Molecular magnet N@C₆₀(fullerine) BEC

Solid State

Quantum dot Superconductor Si-based QC

Optical

Photon Photonic crystal

Electron beam

- el. floating on liquid He
- el. trapped by SAW
- el. trapped by magnetic field

Model quantum computer

• Hamiltonian – Zeeman & interaction terms.

$$H = \sum_{i} \hbar \omega_{i} I_{i\alpha} + \sum_{i,j} J_{ij} I_{iz} I_{jz}$$

-single qubit is realized by Zeeman term : Apply magnetic field and wait
-controlled-NOT is realized by interaction term :Wait
-What if the Hamiltonian is different?
-Interactions other than Ising type are valid?

- Turn on and off each term independently
 - addressing & interaction control
 - Can we turn off the interaction?

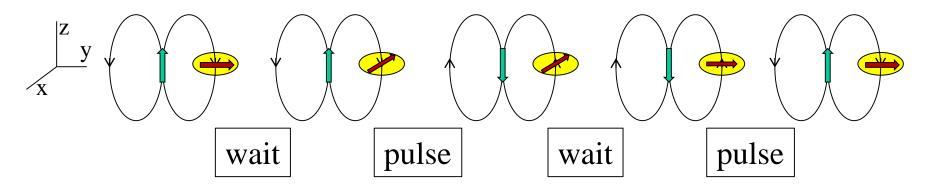
Interaction control

•Turn on only selected interactions, or turn off unwanted interactions

$$\sum_{i,j}^{4} J_{ij} I_i I_j = J_{12} I_1 I_2 + J_{13} I_1 I_3 + J_{14} I_1 I_4 + J_{23} I_2 I_3 + J_{24} I_2 I_4 + J_{34} I_3 I_4$$

•Refocusing sequence – effectively turn off interactions

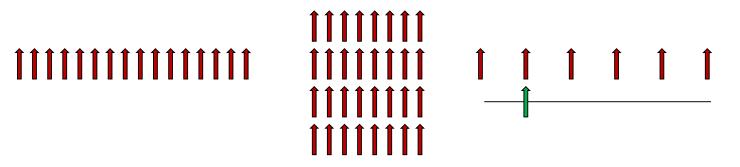
• Hamiltonian Engineering



Interaction control is the real challenge

- Refocusing pulse sequence increase exponentially with # of qubits
- How can we make far qubits interact?

- Moving qubit



Conclusion

- Making a quantum computer is the bottleneck in the development of QIT.
- New quantum computer systems are being suggested.
- In building practical quantum computers, interaction control is the bottleneck.

END